

ELLIPTIc’s documentation

Contents:

	Tutorials
	2D TPFA Tutorial
	Bulding the Mesh

	Modifying the Kernels

	Defining the Physical Mappings

	Reading the Mesh

	Creating the Pipeline

	Creating a Problem

	Running the Problem

	Exporting the Solution

	Putting it All Together

	Examples
	Cell-Centered Finite Volume Method

	TPFA Example

	Packages
	elliptic.Kernel package
	elliptic.Kernel.KernelBase module

	elliptic.Kernel.EntityKernelMixins module

	elliptic.Kernel.ArrayKernelMixins module

	elliptic.Mesh package
	elliptic.Mesh.Mesh module

	elliptic.Mesh.MeshFactory module

	elliptic.Physical package
	elliptic.Physical.Physical module

	elliptic.Physical.PhysicalMap module

	elliptic.Solver package
	elliptic.Solver.MatrixManager module

	elliptic.Solver.Problem package
	elliptic.Solver.Problem.LinearProblem module

	elliptic.Solver.Problem.Pipeline module

	elliptic.Solver.Problem.Problem module

	elliptic.Solver.Problem.Runner module

	Search Page

Tutorials

Packages:

	2D TPFA Tutorial
	Bulding the Mesh

	Modifying the Kernels

	Defining the Physical Mappings

	Reading the Mesh

	Creating the Pipeline

	Creating a Problem

	Running the Problem

	Exporting the Solution

	Putting it All Together

2D TPFA Tutorial

In this tutorial you will learn how to modify the parameters of a Kernel. More specifically, you will learn how to use the built-in TPFA Kernel as a 2D Kernel instead of a 3D Kernel.

You will also go through the entire process of running a numerical simulation with ELLIPTIc.

Bulding the Mesh

The first step is to define the mesh file that will be used with the new Kernel. The mesh should be a 2D mesh. Below is listed an example of the geometry that generates a 2D, quadrilateral, structured mesh. This geometry file should be loaded on Gmsh [http://gmsh.info/].

 1 Point(1) = {0, 0, 0, 1};
 2 Point(2) = {1, 0, 0, 1};
 3 Point(3) = {1, 1, 0, 1};
 4 Point(4) = {0, 1, 0, 1};
 5 Line(1) = {4, 1};
 6 Line(2) = {1, 2};
 7 Line(3) = {2, 3};
 8 Line(4) = {3, 4};
 9 Line Loop(5) = {4, 1, 2, 3};
10 Plane Surface(6) = {5};
11
12 Transfinite Line {1, 2, 3, 4} = 64;
13 Transfinite Surface {6} = {1, 2, 3, 4};
14 Recombine Surface {6};
15
16 Physical Point(101) = {1};
17 Physical Point(102) = {3};
18
19 Physical Line(103) = {1, 2, 3, 4};
20 Physical Surface(50) = {6};

This will generate a 64x64 mesh. If you want to change this later, you just need to replace the last value on line 12.

The generated mesh sould look like this:

[image: ../_images/mesh.png]

Modifying the Kernels

In ELLIPTIc, the Kernel is an entity that will be executed on every mesh element of given dimension. The TPFA Kernel provided with ELLIPTIc is capable of working with both 3D and 2D meshes, with the caveat that it works out of the box only with 3D meshes. To use it with 2D meshes, you will need to extend its functionalities.

The object-oriented nature of ELLIPTIc allows for this to be reduced to a simple inheritance with class attributes overriding, given that the Kernel is built in a way that supports both kinds of parameters.

Each Kernel defines some class attributes. The first one we’ll get through defines the Kernel dependencies. That is, which other Kernels should be executed first. This creates a dependency graph that will be resolved by ELLIPTIc in the correct order. By default, the dependency list of a Kernel is set to an empty list.

The TPFA Kernel dependency list is set to:

1 depends = [EquivPerm, FillDiag, FillBoundary]

This means that the TPFA Kernel depends on the EquivPerm Kernel, FillDiag Kernel and the FillBoundary Kernel to work. This might mean that those Kernels preprocess some value that is needed, the boundary conditions, or anything else that can be processed concurrently (i.e. does not depend on each other).

The first step is then to verify each Kernel and see its class attributes.

By inspecting first the EquivPerm Kernel, you can verify that its class attributes are:

1 elem_dim = 2
2 bridge_dim = 2
3 target_dim = 3
4 depth = 1
5 solution_dim = 2

You can verify what’s the meaning of each one of those in the KernelBase documentation. Interpreting those attributes, and given that this Kernel works by default on 3D meshes, it should be clear that this Kernel is processing each 2-Dimensional face (from elem_dim = 2), and is gathering its two adjacent 3-Dimensional volumes (from bridge_dim = 2, target_dim = 3 and depth = 1), and is then storing a processed value associated with those 2-Dimensional faces (from solution_dim = 2).

You need to change this, so that this Kernel will work as expected on 2D meshes. Basically, you need to reduce all dimensions by one. You will need to create another Kernel, inheriting all functionality from EquivPerm Kernel, and overriding those attributes. You’ll use the fill_vector decorator, so that ELLIPTIc knows that we want a Kernel that fills a vector instead of a matrix. Also, the new class needs to inherit from TPFA.ElemCenter.kernel instead of just TPFA.ElemCenter. This happens because if otherwise, the decorator would be applied twice. So, the Kernel class has this extra attribute, giving access to the original class, before the decorator modifies it.

The Final result is as follows:

1 @fill_vector()
2 class EquivPerm(TPFA.EquivPerm.kernel):
3 elem_dim = 1
4 bridge_dim = 1
5 target_dim = 2
6 depth = 1
7 solution_dim = 1

You should keep the same name if you want to use an extended Kernel within other Kernel that depends on it. This is to make sure that the matrix names and conventions are kept the same. If this is not done, the TPFA Kernel wouldn’t be able to access the EquivPerm results properly.

Let’s now extend FillDiag Kernel. The original class has the following attributes:

1 elem_dim = 3
2 bridge_dim = 3
3 target_dim = 3
4 depth = 1
5 solution_dim = 3

We shall then modify those to the according values for a 2D mesh:

1 @fill_matrix(name="T", share=True)
2 class FillDiag(TPFA.FillDiag.kernel):
3 elem_dim = 2
4 bridge_dim = 2
5 target_dim = 2
6 depth = 1
7 solution_dim = 2

Notice how we are now passing parameters to the fill_matrix decorator. Those parameters are set to be the same as in the original FillDiag Kernel class, to ensure consistency with the behaviour implementation. The first parameter, name, is the name of the array that will be filled. This name is just an identifier, and is supposed to be unique for each Mesh object (i.e. you can have multiple Kernels with the same name, but none of them should be used together on a given Mesh), except if the parameter share is set to True. In this case, you are allowed to have many Kernels with the same array name, as they will share and modify the same array.

If you understood those last concepts, the FillBoundary Kernel will be straightforward. The original class has the same attributes as the FillDiag Kernel, and it uses the fill_vector decorator with the name parameter set to “b”. Therefore, the resulting extended class should look like:

1 @fill_vector(name="b")
2 class FillBoundary(TPFA.FillBoundary.kernel):
3 elem_dim = 2
4 bridge_dim = 2
5 target_dim = 2
6 depth = 1
7 solution_dim = 2

Finally, the TPFA Kernel will be extended. The original class has those attributes:

1 elem_dim = 2
2 bridge_dim = 2
3 target_dim = 3
4 depth = 1
5 solution_dim = 3

By applying the same logic as before, the resulting class should look like:

 1 @fill_matrix(name="T", share=True)
 2 class TPFAKernel2D(TPFA.TPFAKernel.kernel):
 3 elem_dim = 1
 4 bridge_dim = 1
 5 target_dim = 2
 6 depth = 1
 7 solution_dim = 2
 8
 9 depends = [EquivPerm, FillDiag, FillBoundary]

Notice here that we are setting the name parameter to the same matrix defined in the FillDiag Kernel, and the share parameter is set to True. This ensures that this kernel will access the same matrix that will be initialized by the FillDiag Kernel. Also, the depends attribute is overriden to a list containing the new defined kernels.

Defining the Physical Mappings

You are now ready to set the physical constraints associated with the problem. We first begin by inspecting the geometry file. It defines two physical points, four physical lines and one physical surface. Each of those is supposed to be mapped to a Physical subclass instance. There are many Physical subclasses that are built-into ELLIPTIc, but you are free to define your own ones depending on your needs.

Let’s associate the two physical points with two Dirichlet boundary conditions. We can see that the physical ID of those two points are 101 and 102. Let’s also associate each physical line with a Simmetry boundary condition. Those four lines are under the same physical ID of 103, and the physical surface with a Simmetry.

Those associations are made using the PhysicalMap class.

This can be done as follows:

1 physical = PhysicalMap()
2 physical[101] = Physical.Dirichlet(1.0)
3 physical[102] = Physical.Dirichlet(-1.0)
4 physical[103] = Physical.Symmetric()
5 physical[50] = TPFA.TPFAPermeability(1.0)

Reading the Mesh

Reading the mesh is straightforward. Supposing that the generated mesh filename is square.msh, and is located in the same folder as the python script that you are building, it can be done as follows:

1 meshfile = 'square.msh'
2 mf = MeshFactory()
3 m = mf.load_mesh(meshfile, physical)

The second line creates a MeshFactory instance, which is responsible for initializing and creating a mesh. You just have to call the load_mesh method with the filename and a PhysicalMap instance.

Creating the Pipeline

The next step is to define the Kernel Pipeline that will be executed on the mesh. You can initialize it by passing an iterable object containing the Kernels that will be run in a mesh.

You can create a Kernel Pipeline as follows:

1 pipeline = Pipeline([
2 TPFAKernel2D
3])

Creating a Problem

In ELLIPTIc, a Problem is a class that is responsible for interfacing with a solver. For example, the LinearProblem class interacts with PyTrilinos interface to the AztecOO linear solvers.

To initialize a LinearProblem you must pass the mesh, the pipeline that will be executed on the mesh, and the dimension of the final solution of interest:

1 problem = LinearProblem(mesh=m, pipeline=pipeline, solution_dim=2)

Running the Problem

Each problem might have many different optional steps and parameters that may or may not be of interest to the actual physical problem being studied. Those steps and parameters are supposed to be abstracted away with the use of a Runner subclass.

The TPFA module provides a Runner that can be used with a LinearProblem:

1 runner = TPFA.TPFARunner(problem)
2 runner.run()

The second line on the above snippet calls the run() method on the Runner, which will execute the steps necessary for the final objective: to solve the problem Tx = b for the vector x.

Exporting the Solution

Finally, the solution can be exported with the LinearProblem method export_solution:

1 problem.export_solution(solution_name="Pressure", file_name="output_2d.vtk")

This will create a file named “output_2d.vtk”, that can be opened on your scientific visualizer of preference (ParaView or VisIt, for example).

Putting it All Together

The final script is summarized below, including the necessary imports.

Examples

Cell-Centered Finite Volume Method

TPFA Example

Packages

Packages:

	elliptic.Kernel package
	elliptic.Kernel.KernelBase module

	elliptic.Kernel.EntityKernelMixins module

	elliptic.Kernel.ArrayKernelMixins module

	elliptic.Mesh package
	elliptic.Mesh.Mesh module

	elliptic.Mesh.MeshFactory module

	elliptic.Physical package
	elliptic.Physical.Physical module

	elliptic.Physical.PhysicalMap module

	elliptic.Solver package
	elliptic.Solver.MatrixManager module

	elliptic.Solver.Problem package
	elliptic.Solver.Problem.LinearProblem module

	elliptic.Solver.Problem.Pipeline module

	elliptic.Solver.Problem.Problem module

	elliptic.Solver.Problem.Runner module

elliptic.Kernel package

elliptic.Kernel.KernelBase module

elliptic.Kernel.EntityKernelMixins module

elliptic.Kernel.ArrayKernelMixins module

elliptic.Mesh package

elliptic.Mesh.Mesh module

elliptic.Mesh.MeshFactory module

elliptic.Physical package

elliptic.Physical.Physical module

elliptic.Physical.PhysicalMap module

elliptic.Solver package

elliptic.Solver.MatrixManager module

elliptic.Solver.Problem package

elliptic.Solver.Problem.LinearProblem module

elliptic.Solver.Problem.Pipeline module

elliptic.Solver.Problem.Problem module

elliptic.Solver.Problem.Runner module

Index

 _static/comment-bright.png

_images/mesh.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 ELLIPTIc’s documentation

 		
 Tutorials

 		
 2D TPFA Tutorial

 		
 Bulding the Mesh

 		
 Modifying the Kernels

 		
 Defining the Physical Mappings

 		
 Reading the Mesh

 		
 Creating the Pipeline

 		
 Creating a Problem

 		
 Running the Problem

 		
 Exporting the Solution

 		
 Putting it All Together

 		
 Examples

 		
 Cell-Centered Finite Volume Method

 		
 TPFA Example

 		
 Packages

 		
 elliptic.Kernel package

 		
 elliptic.Kernel.KernelBase module

 		
 elliptic.Kernel.EntityKernelMixins module

 		
 elliptic.Kernel.ArrayKernelMixins module

 		
 elliptic.Mesh package

 		
 elliptic.Mesh.Mesh module

 		
 elliptic.Mesh.MeshFactory module

 		
 elliptic.Physical package

 		
 elliptic.Physical.Physical module

 		
 elliptic.Physical.PhysicalMap module

 		
 elliptic.Solver package

 		
 elliptic.Solver.MatrixManager module

 		
 elliptic.Solver.Problem package

 		
 elliptic.Solver.Problem.LinearProblem module

 		
 elliptic.Solver.Problem.Pipeline module

 		
 elliptic.Solver.Problem.Problem module

 		
 elliptic.Solver.Problem.Runner module

_static/up-pressed.png

_static/up.png

_static/plus.png

